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Abstract
When visualising datasets that are too large to be

displayed in their entirity, interactive navigation is a
common solution. However, instantaneous updates of
the visualisation when navigating can result in disrup-
tion to the user’s mental map. Animated transitions
are one way of addressing this problem. This paper
presents the Data–Model–View–Controller (DMVC) ar-
chitecture for navigation-based interactive systems. Na-
vani, a software framework based on DMVC for sup-
porting animated transitions during navigation, is pre-
sented, along with a sample application of it to hierar-
chical data.

Keywords— Animated transitions, navigation, large-
scale visualisation, Navani, Data-Model-View-Controller

1 Introduction
As the size of datasets continue to increase, their

visualisation becomes increasingly difficult. Datasets
are frequently much too large to be visualised in their
entirity. Such large-scale visualisation necessitates the
visualisation of subsets of the data, combined with in-
teractive navigation. The navigation allows the user to
change the subset of the data that is being visualised.

This introduces the problem of minimising the dis-
ruption to the user’s mental map across navigation tran-
sitions. Navigation, by its very nature, requires chang-
ing the information that is displayed. However, simply
updating the visualisation instantaneously is rarely ade-
quate, as it results in visual elements appearing and dis-
appearing suddenly, and the changing of the placement
and visual relationships of the visual elements. This has
been shown to adversely affect the user’s mental map,
and the user’s performance can suffer if the mental map
is not preserved [1, 2].

Immediately updating displays are commonplace in
graphical applications. One simple example of this is
JDiskReport [3], a freeware application to graphically
show the disk space usage of directories in a filesys-
tem. Users can navigate between directories in a vari-
ety of ways, and can view the usage in a variety of for-

mats, but in all cases the on-screen changes are instan-
taneous. This problem is not limited to small, free utili-
ties. For example, Tom Sawyer Visualisation (TSV) [4] is
a sophisticated interactive graph editor and toolkit, and
when coupled with Tom Sawyer Layout it also includes
advanced graph drawing algorithms. Yet TSV does not
support animated transitions of graph layouts.

This naı̈ve approach shows no regard for preserva-
tion of the user’s mental map, as such, software which
behaves in this manner can be difficult and frustrating to
use. Unlike software which is poorly designed (for ex-
ample, with an unintuitive graphical user interface lay-
out), it is generally not possible for users to be able to
“learn” to deal with the loss of their mental map. If the
display is completely updated and rearranged from the
previous view of the data, then users have no choice but
to completely rebuild their mental map, which requires
both time and effort.

A better approach is to use animated transitions to
help preserve the user’s mental map [5, 6, 7]. Since
the human visual perception system is naturally good
at tracking motion, it makes sense to use motion when
updating a visual display. This allows the user to offload
the cognitive load of comprehending the changes to their
perceptual system, which means that they are more eas-
ily able to follow the changes taking place.

Horizontal and vertical scroll bars are a good ex-
ample of a simple user interface component that benefit
from animation to preserve mental map. For example,
if the view is shifted downwards by half a page instan-
taneously, then the user’s only cue on the direction of
the change is their action that initiated it. This issue
is easily observed when viewing a display that is being
rapidly scrolled up or down by another person. Since
the observer does not know whether the user has chosen
to scroll up or down, they have no cues at all regarding
the direction of the change. Thus, when the scrolling
is rapid, it is very easy for the observer to feel “lost”,
as they do not have time between scrolling operations
to rebuild their mental map. However, if each scrolling
operation results not in an instantaneous update of the
display, but a brief animation that directly shows the up



or down movement of the displayed information, then
this problem is alleviated [8]. The speed of the anima-
tion is likely to play a role, but the subject of the optimal
speed of arbitrary animations has not received much at-
tention in the literature [9, 10]. Furthermore, there may
be superior ways of providing temporal context during
scrolling (for example, by using afterglow effects [11]),
but animated transitions are certainly a straightforward
way that is an improvement on an instantaneous change.

Operating systems such as Apple’s MacOS X also
use animated transitions when performing operations
on windows such as opening, closing, minimising and
restoring, as well as when presenting an overall view of
all windows with the Exposé feature [12]. In addition
to being visually appealing, these animations help to in-
form the user of the relationships between the on-screen
visual elements before and after the operation.

Despite these advantages, animation is not a
panacea; benefits are not automatically obtained by ar-
bitrary animation of transitions. The animation must be
well-designed and the changes presented should be min-
imised. Constructing an optimal animation for a given
change is a non-trivial exercise [13]. Further, anima-
tion is not always appropriate and to be effective they
must be well-conceived [14]. Indeed, exceedingly poor
animations are likely to be actively misleading; that is,
worse than no animation.

This paper has three contributions. First, the Data–
Model–View–Controller (DMVC) architecture is pre-
sented as a way of structuring navigation-based inter-
active systems. Second, Navani is presented, which is a
software framework supporting navigation and animated
transitions in large-scale visualisations. Navani does not
address the evaluation of navigation or animation strate-
gies, but provides a toolkit for animation researchers to
use in their investigations. Finally, HiePie is presented
as a sample application of Navani to hierarchical data.

2 Animation model
The animation and data model used by Navani is

based on the Model–View–Controller (MVC) paradigm
[15], which is a commonly found architecture for mod-
elling and implementing interactive graphical systems.
In the traditional MVC architecture, the Model is an ab-
stract representation of the underlying data, the View
is the visual or graphical representation of the Model
which is presented to the user, and the Controller is the
user interface, that is, how the user is able to adjust the
Model and View. The MVC is illustrated in Figure 1.

However, the MVC is insufficient to adequately de-
scribe the operation of large-scale visualisation, since
the Model cannot be visualised in its entirity by the
View. It is not appropriate to include a visualisation sub-
set within the Model, since the purpose of the Model is
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Figure 1: The Model–View–Controller (MVC).
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Figure 2: The Data–Model–View–Controller (DMVC).

to be abstractly independent of any particular visualisa-
tion method. Furthermore, this would mean that simple
navigation operations would be “changing” the Model,
which is counter-intuitive. Similarly, adding the subset
to the View is not appropriate because we would like to
be able to try many different models of navigation with
any given visual representation (that is, with any View).

This paper addresses this issue by presenting
the Data–Model–View–Controller (DMVC) architec-
ture, which is an extension of the MVC. The Data is
the entire overall dataset, that is, what was considered
the Model of the MVC. For large-scale visualisation, the
Data cannot be directly visualised, and so the Model in
the DMVC is a smaller representation of the Data, one
which can be appropriately visualised. If the data pre-
sented in the Model is updated by the user, then these
changes are propagated to also update the Data. This
terminology is somewhat more natural, since the word
“model” means a smaller representative object contain-
ing less information. This architecture is illustrated in
Figure 2. The DMVC is a generalised version of the
“Zoomed Model” presented in Structural Zooming [7].

3 Software framework: Navani
This section presents Navani, a software framework

written in Java for supporting animated transitions of
large-scale visualisation. Navani abstracts away the low-
level details of providing animated transitions, allowing
the information visualisation researcher or software de-
veloper to concentrate on the development and evalua-
tion of the actual visualisation and transition methods.

Navani is written in Java2, and by default uses
Java2D for its graphics display. Java was chosen as it is
reasonably cross-platform and web-enabled, which can
be important when evaluating visualisation techniques.



Navani can function as an application or a web-applet.
The navani.Panel class is the core user in-

terface class. It extends JPanel to provide an area
in which to display the visualisation, and provides
another JPanel object for control panels and options
widgets. The controls can be placed anywhere, for
example in a separate window, but by default they
are added underneath the main Panel area. The Panel
contains objects for each of the Data, Model, View and
Controller aspects of the DMVC model.

3.1 DMVC implementation
This section describes the implementation in Na-

vani of the Data–Model–View–Controller architecture.

3.1.1 Data. The navani.Data class represents the
overall data structure that is being visualised. It is in-
herited by classes that provide the necessary storage and
methods for specific types of Data objects, for exam-
ple, a graph or tree structure. The Data can be de-
fined either explicitly, where some or all of the data
is resident in memory, or it can be implicit, where
the data structure is generated as it is needed (for ex-
ample, an infinite graph or tree structure). Individ-
ual data elements in the data structure should imple-
ment the navani.DataElement interface, to al-
low them to be used by other aspects of Navani. Fi-
nally, the Data class implements a canonical Listener
design pattern [16], allowing other classes that imple-
ment the DataUpdateListener interface to receive
DataUpdateEvent objects whenever the underlying
data is modified.

3.1.2 Model. The navani.Model class represents
the Model, that is, the subset of the Data that is currently
being viewed by the user. Each specific Data class may
have several possible Models, each with a different way
of representing the concept of a ”subset” of the data. For
example, graph data may have a model that is a subset
of the nodes, with edges between nodes in the subset
implicitly included, or an alternative model might be a
subset of the edges, with the adjacent nodes implicitly
included. The Model also includes the representation of
the user’s navigation history, that is, not only the current
subset of the data, but also previous subsets. This allows
the user to return to previous views, by undoing and re-
doing navigation operations. The Model class also im-
plements the Listener pattern [16], allowing classes im-
plementing the ModelUpdateListener interface to
receive ModelUpdateEvent objects when the model
changes. There is a ModelUpdateEvent sub-class
for each type of navigation operation that is supported
by a particular Model class.

3.1.3 View. The navani.View class represents the
View, that is, the actual visual display of an instance
of the Model. Thus, a Model may have many possi-
ble visual representations, all of which are simply dif-
ferent ways of displaying the same information. For ex-
ample, a tree may be drawn in a traditional node-link
style, where tree nodes are typically boxes and lines are
used to join child nodes with their parents, or it may be
drawn in the inclusion style, where the parent-child rela-
tionship is visually represented by the child nodes being
wholly within the region of the parent node.

A View is simply a collection of navani.-
VisualForm objects, each of which is a single visual
entity. Typically, VisualForm objects are used to provide
a visual representation of a DataElement. The Visual-
Form class is abstract, and must be sub-classed in order
to provide visual ways of representing particular types of
data. The current implementation of VisualForm stores
a collection of Java2D Shape objects, along with a Color
and Label. The navani.VisualNode subclass adds
a reference to a DataElement object.

The navani.VisualFormFactory class
utilises the Factory design pattern [16] to create Vi-
sualForm objects of a certain type. It is abstract, and
subclasses must return a collection of VisualForm
objects for a given collection of DataElement objects
and an on-screen area in which to represent the data.
Typically there is only one VisualFormFactory for each
VisualForm type, but of course there may be several
ways of creating VisualForms of a particular type.

3.1.4 Controller. The navani.ViewTransit-
ioner class represents the Controller, that is, the algo-
rithm for responding to navigation operations initiated
by the user. It is also an abstract class, and subclasses are
notified of ModelUpdateEvents when they occur. Each
different view style may have many possible ways of
animating transitions between views, each of which is
encapsulated in a ViewTransitioner class. The simplest
ViewTransitioner is the NoAnimationTransition
class, which does not attempt to perform any animation
at all, rather, it merely displays the updated view imme-
diately. This is mostly useful for demonstrating how the
mental map is easily lost in the absence of animation.

To easily support animation, VisualForm sub-
classes must implement an intermediate()
method. This method takes as input the initial and
final VisualForm objects and a fraction 0 < f < 1,
and returns a VisualForm object which is f part-
way between the initial and final VisualForms.
The abstract navani.AnimationStrategy
class specifies the type of animation that is to
be performed, such as linear interpolation by
navani.AnimationStrategyLinear. It



provides similar intermediate() methods for
primitive numeric types, namely the floating-precision
(float, double) and integer (int, long) types, as
well some higher-level types such as two dimensional
shapes (Point2D, Line2D, Rectangle2D and so
on), RGB colours (Color), and so on. Since all of the
parameters representing visual forms are composed of
these basic numeric types, their intermediate()
methods can be built up from those provided by the
AnimationStrategy object. For the linear animation
strategy, the intermediate() methods for the
numeric types simply take the familiar form
intermediate = inital+fraction∗(final−initial)

Other AnimationStrategy classes are possible for other
types of animations, such as “slow-in”–“slow-out”
animations, rectilinear motion of shapes in 2-space, etc.

Animated transitions are represented by the ab-
stract navani.ViewChange class, which supports
obtaining intermediate navani.View objects. The
navani.ViewChangeSingle class defines a sin-
gle animation between an initial and a final View, the
navani.ViewChangeMulti class defines an ani-
mation in terms of a sequence of other ViewChange ob-
jects, and the navani.ViewChangeReverse class
is the time-reversed version of another ViewChange ob-
ject. These allow complex animations to be easily built
up out of compositions of simpler ones.

3.2 Support classes
Navani features an assortment of other classes for

supporting animations.
The abstract ViewAnimator class actions an

animation with a given number of frames. The
ViewAnimatorTimed subclass displays an anima-
tion with a delay between each frame to control the
speed, while the ViewAnimatorInteractive sub-
class uses GUI buttons to step through the animation,
which can be useful for debugging animated transitions.

The abstract ColorMapper class, and its
two subclasses ColorMapperPalette and
ColorMapperColormap, allow the color of
VisualForm objects to be chosen systematically.

The DataElementComparator class allows
data elements to be compared, which allows them
to be sorted according to some property. The
DataElementVisualAttributes provides per-
data-element storage of persistent visual attributes,
which, for example, can be used to ensure that the colour
of each data element never changes.

4 Sample application: Hierarchical data
This section presents the application of Navani to

the visualisation of hierarchical data. This application

Model
nodes

Figure 3: The tree-based Model used by HiePie.

is a work-in-progress named HiePie, and was the moti-
vating driver behind Navani. It is concerned with visu-
alising the disk space used in a hierarchical file system,
for the purposes of quickly and easily locating possi-
ble files and directories to remove or relocate when free
disk space becomes low. It is also expected to be a use-
ful case study for research into navigation of large-scale
visualisation with animated transitions.

4.1 Data, model and view
Since the data for HiePie is hierarchical, it is rep-

resented by a tree structure. The hiepie.Tree class
inherits from navani.Data, and the tree nodes are
represented by the hiepie.TreeNode class, which
inherits from navani.DataElement. Each Tree-
Node uses a hiepie.Entry object to decouple the
filesystem-specific data from the tree structure.

The hiepie.Model class inherits from
navani.Model, and defines a subset of the data
to be the nodes between an identified focus node and
the root node. This is illustrated in Figure 3. This model
will be generalised in the future as HiePie is improved,
however it serves the current purpose of demonstrating
the usefulness of defining a Model of the Data.

The standard navani.View class, which keeps a
collection of VisualForm objects, is sufficient for HiePie
and does not require subclassing.

There are two visual representations of a Tree-
Node: a “Bar” form and a “Wedge” form. The
Bar form, defined by hiepie.Bar and generated by
hiepie.BarFactory, is shown in Figure 4(a). It
represents the children of the tree node by segments in a
rectangle, where the size of each segment corresponds
to the size of file or directory in the filesystem. The
Wedge form, defined by hiepie.Wedge and gener-
ated by hiepie.WedgeFactory, is shown in Fig-
ure 4(e). This is similar to the bar form, except that
each child is a wedge in a circular pie chart. Both the
Bar and Wedge forms inherit from a common parent,



(a) Initial (b) Insert (c) Expand (d) Final
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Figure 4: The stages of the animation for the HiePie “AddThenGrow” controller, used with the Insert addition method.
Figures (a)–(d) show the animation for the Bar visual form, while Figures (e)–(h) show the Wedge visual form. The
colour indicates the overall size of the tree node (including children), with red the largest and blue the smallest.

hiepie.VisualNode, which is an abstract represen-
tation of these two forms. It contains an origin (x, y)
point, an offset start, a size, and an orthogonal size. For
the Bar, the origin is the top-left corner of the box, the
offset start and size are in vertical direction, and the or-
thogonal size is the horizontal width. The Width is very
similar, except it is in polar coordinates — the origin is
the center of the circle, the offset start is the angle at
which the wedge begins, the size is the angular width of
the wedge, and the orthogonal size is the radius. Thus,
the only difference between the two is the visual inter-
pretation of these parameters.

4.2 AddThenGrow animated transition
The hiepie.AddThenGrow controller transi-

tions from a node to its child in two stages. First, the
child nodes are added within the region of the node,
and second, the child nodes are expanded until they oc-
cupy the full display. Three node addition methods are
supported, Appear, Fade-In and Insert. Appear simply
makes the child nodes appear instantaneously, Fade-In
gradually fades in the colours of the child nodes, and In-
sert “slides” the child nodes in orthogonally. Figure 4
shows an intermediate frame in the addition and expan-
sion stages for the Bar and Wedge forms, as well as the
final view. Video files comparing all of these animated
transitions are available on the web [17].

Note that the same AddThenGrow controller class
is able to work with both the Bar and Wedge forms, since
they are both abstractly represented by VisualNode.

4.3 BarExplorer animated transition
The AddThenGrow controller is an example of a

simple animated transition facilitated by Navani. A
more advanced controller is hiepie.BarExplorer,
which is similar to the filesystem explorer in Mac OS
X. It is shown in Figure 5, and a video file showing the
animation is available on the web [17]. This method
is similar to AddThenGrow, except that the new focus
node is expanded horizontally alongside its parent. This
allows the user to see several nodes concurrently. Con-
text is provided by tethering children to parents by the
navani.VisualGlue class. This class is a subclass
of navani.VisualForm that draws a trapezoid be-
tween the bounding boxes of two groups of VisualForm
objects. When there is no remaining horizontal space,
the display scrolls to the right.

5 Conclusions
Animated transitions are a useful way of approach-

ing the problem of preserving the user’s mental map
during navigation in large-scale visualisations. This
paper has presented Navani, a software framework for
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Figure 5: The stages of the animation for the “BarExplorer” controller for the Bar visual form.

supporting the developers of animated transitions. Na-
vani is written using the Data–Model–View–Controller
(DMVC) architecture. HiePie, a sample application of
Navani to hierarchical data, was presented.

It is clear that the animated transitions shown in
HiePie are of varying quality; for example, it seems that
the additional context offered by BarExplorer provides
benefits over AddThenGrow. However, the emphasis of
this paper is not the quality of these particular animated
navigation techniques, but rather the way in which Na-
vani has facilitated their development and implementa-
tion. Navani removes the burden of implementing low-
level animation details, thus allowing the visualisation
designer to focus directly on the animated transitions.
The designer is free to get on with the job of develop-
ing, evaluating and improving the animated navigation.

As such, the relative merits (or otherwise) of the
specific HiePie animated navigation techniques pre-
sented in this paper will be explored in future work that
is supported by Navani. For example, one disadvantage
of BarExplorer is its linear nature. It is expected that a
method which can provide similar animated navigation
for the Wedge form will allow non-linear exploration of
the tree in the plane.
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